Solution

- 1A: $7997=11^{*} 727=>727$.
- 2D: $7887=3^{*} 11^{*} 239=>239$.
- 6A: $1000<17^{\wedge} \mathrm{n}<9999=>4913$.
- 14D: $1000<71^{\wedge} \mathrm{n}<9999=>5041$.
- 20D: Only possible digits are $\{6,9\}$ or $\{7,8\}$. Division by 4 => 96 .
- 21D $\operatorname{LCM}(23,29)=23^{*} 29=667$.
- 9D: A three digit square such that its middle digit is the unit's digit of its square root.
$=>9 D=100,200,784$ or 900 . But three of them imply that 15 A starts with $0 .=>9 \mathrm{D}$ $=784$
- 10A: $3 \mid 10 \mathrm{~A}$ and $2^{*} 10 \mathrm{~A}$ is a cube $=>2^{*} 10 \mathrm{~A}=216$ or $1728 \Rightarrow 10 \mathrm{~A}=108$ or 864 . By $5 D, 10 A<180$ so $10 A=108$.
- $11 \mathrm{~A}=28$.
- $8 \mathrm{~A}: 8 \mathrm{~A}<20 \%$ of $20 \mathrm{D}=>8 \mathrm{~A}<20=>8 \mathrm{~A}=19$.
- $4 \mathrm{D}=\mathrm{=} \times 3 \mathrm{l}=>$ palindromic $=>33$.
- $9 \mathrm{~A}=" 7 \mathrm{x}$ " so by trial and error it is 72 .
- $15 A=" 4 x$ " so by trial and error it is 46 .
- $25 \mathrm{~A}=" x 7 x$ " and palindromic $=\bmod (2 x-7,11)=0=>2 x=18=>x=9=>979$.
- $4 \mathrm{~A}=$ = $3 x y$ " where $x+y=1$ and $7 \mid 3 x y=>" x y "=" 01 "$ so $4 A=301$.
- $16 \mathrm{D}=\mathrm{"} 6 x \mathrm{y}^{\prime}=61^{*} \mathrm{n}+16=>16 \mathrm{D}=655$.
- $21 \mathrm{~A}=65$ (filled in).
- 5D: $10 \mathrm{~A}=108=>5$ sides. 45 sided polygon $=>5 \mathrm{D}=172 \mathrm{deg}$.
- $21 \mathrm{~A}: 7 \mathrm{D}=" 1 \mathrm{x}$ ", $21 \mathrm{~A}=65$ so by trial and error, $7 \mathrm{D}=16$ and $12 \mathrm{~A}=63$.
- $8 D=2^{*} 12 A=126$.
- $3 \mathrm{D}=1 / 2^{*} 15 \mathrm{~A}+2 / 7^{*} 8 \mathrm{D}=1 / 2^{*} 46+2 / 7^{*} 126=23+36=59$.
- 18A: by $17 \mathrm{~A}, 18 \mathrm{~A}<180$. Therefore middle digit $=0=>18 \mathrm{~A}=" 10 x$ " and then 4 factors => 106.
- $17 \mathrm{~A}=(180-18 \mathrm{~A}) / 2=74 / 2=37$.
- 22A: By 23D, it is a 4-digit multiple of 301 which ends in $2=>3612,6622$ and 9632 . So 3611,6621 or 9631 . Digits are in descending order $=>9631$.
- $23 \mathrm{D}=(22 \mathrm{~A}+1) / 4 \mathrm{~A}+1=9632 / 301=32$.
- 19A: $8 \mathrm{D}=126$ so 2-digit factors are $14,18,21,42$ and 63 . Also, 19D is a cube so first digit of $19 \mathrm{D}=1,2,3,5$ or 7 . Together, these imply that $19 A=14,18$ or 21 .
However, $19 A=21 \Rightarrow 13 D=331$ which is not $>4 A^{*} 1.1$ so first digit of $19 A, 19 D$ is 1 . Then, from 22A, 9 and 6 are factors of $19 A=>19 A=18$.
- 13D = 338 (filled in).
- 19D: 3-digit cube, starting with $1=125$.
- 22D $=72 \%$ of $125=90$.
- $6 \mathrm{D}=4 \mathrm{x} 0 \mathrm{y} "=$ multiple of 11 so 6 D in $\{4004,4103,4202,4301,4400,4609,4708$, 4807,4906 . Also $24 \mathrm{~A}=" 5 z 0$ " divides 6D. Together, these imply that 6D $=4400$.
- and $24 \mathrm{~A}=550$.

